ROBERT EVAPORATORS

Robert rising film tube evaporator

1 Top Access Door 2 Vapour Pipe 3 Entrainment Baffle 4 Noxious Gas Outlet 5 Calandria Pressure Gauge 6 Condensate Level Gauge 7 Condensate Outlet Pipe 8 Juice Outlet 9 Water Service 10 Drain 11 Bottom Access Door 12 Caustic Service 13 Juice Inlet 14 Static Juice Level Gauge Glass 15 Calandria 16 Steam/Vapour Inlet 17 Sight Glasses 18 Evaporator Body Access Door 19 Body Pressure/Vacuum Gauge

So many variations in design (1)

- Steam entry
 - Single or dual entry onto tube bundle at periphery
 - Single or dual entry onto outer annulus
 - Into centre of calandria
 - With or without steam lanes
- Condensate removal
 - At periphery
 - At centre
- Incondensible gas removal
 - Several off takes around calandria
 - At end of defined steam path
 - Through top tube plate; through side wall

So many variations in design (2)

- Juice entry
 - All underneath (rising film)
 - Single entry (capped)
 - Multiple entry (tubes with holes)
- Juice flow within the vessel
 - Full basket calandria (all downflow of juice is via the heating tubes)
 - Use mini downtakes

So many variations in design (3)

- Juice outflow
 - From underside of calandria (single or multiple)
 - Via a central downtake (mostly semi-sealed)
 - Via peripheral offtake gutter(s) above the top tube plate

Robert evaporators are basically 'home' designed **VERY ROBUST DESIGN**

Boiling action in a tube

000

 ΔT = Vapour temperature - Juice boiling temperature

Juice boiling temp = Head space saturation temp + BPE + Temp rise due to hydrostatic head Juice entering base of tubes is at the outlet brix

Boiling action in a tube

Optimum juice level exists

Second highest HTC

Highest HTC

Medium HTC

Low HTC

Optimum juice level exists Example for first effect

Typical ideal juice levels for good heat transfer efficiency

Vessel number	Typical static operating levels
1	30-35%
2	30-35%
3	35-40%
4	35-40%
5	45%

Juice sampling trials in Robert evaporators

Tully #4 vessel

Full basket calandria

Five sampling pumps

Cool extracted juice

Collect sample every 2 minutes for 60 to 70 minutes

Analyse for refrac. brix

Results for Tully #4 evaporator Juice brix throughout vessel is at the outlet brix

Juice sampling in SRI Robert evaporator

Broadwater #1 evaporator SRI design evaporator Radial steam flow Central juice downtake (sealed type)

Sampling at position A Broadwater #1 Juice below calandria is at intermediate brix

Tube data

• Diameters:

38, 44 and 50 mm

• Lengths

1.8 to 4 metres

- Material
 - Stainless steel (304); brass, carbon steel

Properties of effect position

Position	HTC	Brix	BPE	Temp.	Pressure
	W.m ⁻² .K ⁻¹	%	°C	°C	kPa (g)
Steam				121	104
1	3000	20	0.5	113 7	57
2	2500	24	0.6	106 1	24
3	2000	31	0.8	95	-16
4	1500	42	1.4	80 26	-54
5	600	68	4.3	54	-86

Good HTC but large temperature difference at tail end

Temperature difference (ΔT) of vapour

- Temperature difference of vapour is sum of three components
 - Actual driving force for heat transfer
 - Boiling point elevation
 - Effect of hydrostatic head on juice at the base of the tube. In 3 m long tube:- For 2 m tube
 - 1 °C at first vessel
 - 10 °C at final vessel

Need minimum Δ **T actual**

for fully wetted rising film boiling

Number	Min ∆T actual, °C
1	5
2	5
3	6
4	8
5	11

What if low vapour rate passes to a Robert evaporator? Low vapour condensation coefficient (vcc; kg/h/m²)

Regions of poor mixing and overconcentration. Problems for the final vessel if target syrup brix is 70⁺

Need greater than a certain minimum vcc to guarantee wetting and good mixing through the vessel

Sucrose losses (1)

- Entrainment of juice droplets
 - Robert design is good
 - Ample height to disengage droplets
 - Sufficient area to install louvres/centrifugal separator

Sucrose losses (2)

- Inversion losses
 - Function of temp, brix, pH and residence time
 - Highest losses early in set
 - Typical Robert evap 8 to 10 L/m² of HSA
 - Steam efficient evaporator sets have more area (and residence time) early in the set
 - Longer tubes of smaller diameter provide lower juice volume per m² of HSA (\rightarrow 7 L/m²)

Example of factory with low process steam efficiency

Example of factory for high process steam efficiency

Summary for Robert evaporators

Advantages:

- Simple design
- Robust design
- Easy access to all sections for repair, hydraulic or mechanical cleaning
- Well suited to chemical cleaning
- Good heat transfer performance
- Good opportunity for de-entrainment of juice
- No pumps required to transfer juice
- Simple control can work well

Summary for Robert evaporators

Disadvantages:

- Needs minimum vapour rate (vcc) and temperature difference for effective operation
- Large minimum temperature difference for the final vessel (hydrostatic head and rising film)
- \rightarrow reduces capacity of the set
- Long residence time (so potentially large sucrose losses through inversion) Magnitude of losses uncertain? Problem likely to be greater for steam efficient configurations

